# Maya: Next Generation Modeling & Simulation Tools for Global Networks

UCLA: R. Bagrodia, M. Gerla, S. Lu, F. Paganini, M. Sanadidi, M. Takai

Caltech: J. Doyle, S. Low

DARPA PI Meeting, October, 2001 Atlanta

# **Impact**

- A multi-paradigm integrated framework for network performance analysis: Maya
- A novel theory of network control and stability:HOT and FAST

Adaptive network control using real-time simulations





## Maya: Multi-Paradigm Network Modeling

Fluid Flow Models

Analytical Models

Abstract Simulation

Detailed Operational Simulation Software

**Virtual Time Synchronization Algorithms** 

**Parallel Execution** 

**Sequential** 









# **Multi-Paradigm Network Modeling**

Motivation

- Achieve appropriate balance between
  - model development time,
  - model accuracy, and
  - model solution time
- Provides an appropriate validation environment
- Promotes easier extensibility of models

### **Accomplishments** (Packet Level Simulations)

- Simulate realistic Naval scenarios with 65 objects, up to 10x faster than existing COTS tools
- Simulate networks that are 100x larger than can be simulated using existing COTS tools.
- Accurate simulation of ad hoc networks with 100s of radios faster than real time and detailed simulation of networks with up to 10,000 communication devices.
- Technology commercialized into QualNet; in use by DoD units including US Army CECOM, US Navy SPAWAR, and Future Combat System (FCS) to design and analyze next generation military comm networks.

# **SPAWAR:** QualNet Model of Link-16 radios



### CECOM: Large Ad hoc network simulation: 10,000 nodes



(http://www.msiac.dmso.mil/journal/wong32.html)

### **CECOM: Integration with WarGaming**





### **Accomplishments** (Multi-Paradigm Modeling )

- Integration of fluid-flow models and detailed packet level simulations for TCP Westwood (Demo 1)
  - Joint work with Gerla & Paganini
- Integration of fluid-flow models with packet-level simulators NS-2 and QualNet (Demo 2)
  - Joint work with Amherst & Georgia Tech
- Integration of operational software with detailed packetlevel simulation for distributed applications, using both sequential and parallel execution
- Extended backplane design to directly integrate fluid flow models, discrete-event simulation & operational software



- Multi-paradigm modeling of TCP Westwood
  - Analytical model based on fluid flow concept
  - Discrete event model based on operational codes
  - Hybrid model that integrate two different modeling paradigms
- Multi-paradigm modeling framework
  - Multiple simulators and analytical models connected via backplane
  - Demonstration overview
- Work in progress with timeframes

### **TCP** Westwood

TCP Westwood (TCPW) controls the window size based on BSE (Bandwidth Share Estimation)

### When three duplicate ACKs are detected:

- set ssthresh=BE\*RTT (instead of ssthresh=cwin/2 as in Reno)
- · if (cwin > ssthresh) set cwin=ssthresh

### When a TIMEOUT expires:

• set ssthresh=BE\*RTT; set cwin=1; (instead of ssthresh=cwnd/2 as in Reno)



- Estimates Are Determined at TCP Sender Via
  Sampling and Exponential Filtering Techniques
- Bandwidth Samples Are Determined from ACK
  Arrival Process and Info Carried in ACKs
- BSE of TCP Westwood with UDP traffic



### **TCP** Westwood

Performance improvements shown for TCP-westwood in links with high loss probability or long delays



# Initial Performance Evaluation (2)







Simulation

Analysis Validated By Simulation

45Mb/s link; 70 msec RTT;

Router Buffer Size=294 ("=Pipe"Size)

Simulation



- TCP Westwood implemented in QualNet as a variant of TCP models
- Original QualNet TCP models are derived from operational TCP (FreeBSD) codes: validated (highest fidelity)
- Analytical model developed by Paganini et al
- Simulation model by Gerla, Sanadidi, et al
- Mixed analytical-simulation model by Takai, et al

# Integration of TCPW Analytical Model and Packet Level Simulator

- Allows more scalability compared to pure packet level simulation
- Designates a wired sub-network of routers to be simulated using analytical model (fluid-flow model)
- Other subnets and nodes are simulated by packet-level simulator (QualNet)





### TCP Westwood Analytical Model

- Notations:
  - Wi(t), Ri(t) Window size and round trip time of ith TCP connection
  - bi(t) Estimated Bandwidth of ith TCP connection
  - q(t)/C Queueing delay at congested router
  - p(x) loss function for AQM policy
- τ one round trip delay

TCP W'wood

TCP Reno

Window size of ith TCP Connection:

$$\frac{d\overline{Wi}}{dt} = \frac{1}{Ri(\overline{q})} - \frac{\overline{WiWi}(t-\tau)}{2Ri(\overline{q}(t-\tau))} p(x(t-\tau))$$

$$\frac{d\overline{Wi}}{dt} = \frac{1}{Ri(\overline{q})} - \frac{\overline{Wi}(t-\tau)}{Ri(\overline{q}(t-\tau))} p(x(t-\tau)) [\overline{Wi} - ai \cdot \overline{bi}(t)]$$

- Queue Length estimate:  $\frac{d\overline{q}}{dt} = -C + \sum_{i=1}^{N} \frac{\overline{Wi}}{Ri(\overline{q})}$
- Average Queue Length is an exponential average:

$$\frac{dx}{dt} = \frac{\ln(1-\alpha)}{\delta} - \frac{\ln(1-\alpha)}{\delta} - \frac{\ln(1-\alpha)}{\delta} - \frac{1}{\delta} = \frac{1}{\delta} = \frac{\ln(1-\alpha)}{\delta} - \frac{1}{\delta} = \frac{\ln(1-\alpha)}{\delta} - \frac{1}{\delta} = \frac{\ln(1-\alpha)}{\delta} - \frac{1}{\delta} = \frac{$$

Bandwidth Estimation for the ith TCP Connection:

$$\frac{d\overline{b}i}{dt} = \frac{1}{T} \cdot \frac{\overline{W}i(t-\tau)}{Ri(\overline{q})} - \frac{1}{T}\overline{b}i(t)$$

Maya -- UCLA Computer Science

# **Integration Steps** (1)

1. For each link from QualNet nodes to analytical section, packets entering the section will be accumulated as input data rates in each time interval:



# **Integration Steps (2)**

2. The analytical model will solve differential equations to obtain network parameters such as queue lengths of routers:



# **Integration Steps (3)**

3. QualNet will estimate delays for each packet based on router queue lengths, then schedule packet arrival events at exit nodes at other side of analytical section:



# **Network Topology for Experiment**

- QualNet nodes: 1, 6; Analytical section: nodes 2,3,4,5
- Analytical model Connection: Node 4 → Node 2 → Node 3 → Node 5
- QualNet Connection: Node 1 → Node 2 → Node 3 → Node 6
- Link between nodes 2 and 3 will be bottleneck



Pure Discrete Event Simulation



Mixed Model Simulation

# **Validation**

### Connections:

- 20 TCP Westwood connections from nodes 4 to 5
- 1 TCP Westwood connection from nodes 1 to 6

#### To observe:

 Comparable transient and average queue lengths at a specific node for both models



Pure Discrete Event Simulation



# Validation (2)

- The oscillations stabilize quickly
  - Both models produce almost the same average queue lengths over a short period of time





- Greater differences at the beginning of the simulation
  - This is due to the lack of slow start for the analytical model
- After a few seconds, the oscillations stabilize and both curves look similar
  - Both models produce almost the same average queue lengths over a short period of time
  - This shows that analytical model makes quite good predictions

#### Multi-Paradigm Modeling Framework Military; commercial MANET models device models TCP models Operational **Networks** Animator Tracer Designer Analyzer Qualnet Glomosim **PDNS** Simulator 3.1 An Enhanced Backplane The Dynamic Simulation Backplane Consensus Message Import/Export Computation Services **Event Distribution Time Management** The RTIKIT Library Services Services



- Partition the network to be simulated into subnetworks.
- Each sub-network is simulated by one simulator instance.
- The simulator instances are inter-connected via a dynamic simulation backplane
- The simulator instances exchange messages at runtime through the backplane to model packet transmissions across sub-networks.

### **Current Implementation** Fluid flow model Qualnet 1 pdns 1 pdns 2 Qualnet 2 The Dynamic Simulation Backplane Protocol/Item Message Import/Export Consensus Registration Services Computation Services Time Management The RTIKIT Library **Event Distribution** Services Services

### **Demo Overview**





### **Future Work**

- Hybrid model (mix of analytical and discrete event models) has been implemented and verified with pure discrete event models
  - Extend model to derive end-end latency & throughput
  - Extend model to networks with hundreds of flows
  - Generalize interface to incorporate diverse fluid flow models
  - Extend model to incorporate parallel DES
- Multi-Paradigm modeling Environment
  - An enhanced dynamic simulation backplane that supports more generic network topologies
  - Incorporation of analytical network modeling tools such as fluid flow based TCP models
  - Incorporation of operational software